\(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^4} \, dx\) [150]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 142 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {2 (4 A-3 C) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {(6 A+13 C) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {(6 A+13 C) \tan (c+d x)}{105 d \left (a^4+a^4 \sec (c+d x)\right )} \]

[Out]

-1/7*(A+C)*sec(d*x+c)*tan(d*x+c)/d/(a+a*sec(d*x+c))^4+2/35*(4*A-3*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^3+1/105*(
6*A+13*C)*tan(d*x+c)/d/(a^2+a^2*sec(d*x+c))^2+1/105*(6*A+13*C)*tan(d*x+c)/d/(a^4+a^4*sec(d*x+c))

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {4164, 4085, 3881, 3879} \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {(6 A+13 C) \tan (c+d x)}{105 d \left (a^4 \sec (c+d x)+a^4\right )}+\frac {(6 A+13 C) \tan (c+d x)}{105 d \left (a^2 \sec (c+d x)+a^2\right )^2}+\frac {2 (4 A-3 C) \tan (c+d x)}{35 a d (a \sec (c+d x)+a)^3}-\frac {(A+C) \tan (c+d x) \sec (c+d x)}{7 d (a \sec (c+d x)+a)^4} \]

[In]

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^4,x]

[Out]

-1/7*((A + C)*Sec[c + d*x]*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^4) + (2*(4*A - 3*C)*Tan[c + d*x])/(35*a*d*(a
+ a*Sec[c + d*x])^3) + ((6*A + 13*C)*Tan[c + d*x])/(105*d*(a^2 + a^2*Sec[c + d*x])^2) + ((6*A + 13*C)*Tan[c +
d*x])/(105*d*(a^4 + a^4*Sec[c + d*x]))

Rule 3879

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3881

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((a
+ b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 4085

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 4164

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-(A + C))*Cot[e + f*x]*Csc[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(2*m + 1))), x] - Dist[
1/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(-b)*C - 2*A*b*(m + 1) + a*(A*(m + 2) -
C*(m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \sec (c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {\int \frac {\sec (c+d x) (a (6 A-C)-a (2 A-5 C) \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx}{7 a^2} \\ & = -\frac {(A+C) \sec (c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {2 (4 A-3 C) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {(6 A+13 C) \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{35 a^2} \\ & = -\frac {(A+C) \sec (c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {2 (4 A-3 C) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {(6 A+13 C) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {(6 A+13 C) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{105 a^3} \\ & = -\frac {(A+C) \sec (c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {2 (4 A-3 C) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {(6 A+13 C) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {(6 A+13 C) \tan (c+d x)}{105 d \left (a^4+a^4 \sec (c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.91 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.20 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {\sec \left (\frac {c}{2}\right ) \sec ^7\left (\frac {1}{2} (c+d x)\right ) \left (70 (9 A+2 C) \sin \left (\frac {d x}{2}\right )-70 (9 A+2 C) \sin \left (c+\frac {d x}{2}\right )+441 A \sin \left (c+\frac {3 d x}{2}\right )+168 C \sin \left (c+\frac {3 d x}{2}\right )-315 A \sin \left (2 c+\frac {3 d x}{2}\right )+147 A \sin \left (2 c+\frac {5 d x}{2}\right )+56 C \sin \left (2 c+\frac {5 d x}{2}\right )-105 A \sin \left (3 c+\frac {5 d x}{2}\right )+36 A \sin \left (3 c+\frac {7 d x}{2}\right )+8 C \sin \left (3 c+\frac {7 d x}{2}\right )\right )}{6720 a^4 d} \]

[In]

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^4,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^7*(70*(9*A + 2*C)*Sin[(d*x)/2] - 70*(9*A + 2*C)*Sin[c + (d*x)/2] + 441*A*Sin[c + (3
*d*x)/2] + 168*C*Sin[c + (3*d*x)/2] - 315*A*Sin[2*c + (3*d*x)/2] + 147*A*Sin[2*c + (5*d*x)/2] + 56*C*Sin[2*c +
 (5*d*x)/2] - 105*A*Sin[3*c + (5*d*x)/2] + 36*A*Sin[3*c + (7*d*x)/2] + 8*C*Sin[3*c + (7*d*x)/2]))/(6720*a^4*d)

Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.54

method result size
parallelrisch \(-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\left (A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\frac {7 \left (-3 A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{5}+7 \left (A -\frac {C}{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7 A -7 C \right )}{56 a^{4} d}\) \(76\)
derivativedivides \(\frac {\frac {\left (-A -C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {\left (3 A -C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+\frac {\left (-3 A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C}{8 d \,a^{4}}\) \(90\)
default \(\frac {\frac {\left (-A -C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {\left (3 A -C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+\frac {\left (-3 A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C}{8 d \,a^{4}}\) \(90\)
risch \(\frac {2 i \left (105 A \,{\mathrm e}^{6 i \left (d x +c \right )}+315 A \,{\mathrm e}^{5 i \left (d x +c \right )}+630 A \,{\mathrm e}^{4 i \left (d x +c \right )}+140 C \,{\mathrm e}^{4 i \left (d x +c \right )}+630 A \,{\mathrm e}^{3 i \left (d x +c \right )}+140 C \,{\mathrm e}^{3 i \left (d x +c \right )}+441 A \,{\mathrm e}^{2 i \left (d x +c \right )}+168 C \,{\mathrm e}^{2 i \left (d x +c \right )}+147 A \,{\mathrm e}^{i \left (d x +c \right )}+56 C \,{\mathrm e}^{i \left (d x +c \right )}+36 A +8 C \right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(150\)
norman \(\frac {\frac {\left (A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}-\frac {\left (A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{56 a d}-\frac {\left (9 A +5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{24 a d}+\frac {\left (27 A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{60 a d}+\frac {\left (31 A +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{280 a d}-\frac {\left (123 A -31 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{420 a d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{2} a^{3}}\) \(165\)

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

-1/56*tan(1/2*d*x+1/2*c)*((A+C)*tan(1/2*d*x+1/2*c)^6+7/5*(-3*A+C)*tan(1/2*d*x+1/2*c)^4+7*(A-1/3*C)*tan(1/2*d*x
+1/2*c)^2-7*A-7*C)/a^4/d

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.87 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {{\left (4 \, {\left (9 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (39 \, A + 32 \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left (6 \, A + 13 \, C\right )} \cos \left (d x + c\right ) + 6 \, A + 13 \, C\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

1/105*(4*(9*A + 2*C)*cos(d*x + c)^3 + (39*A + 32*C)*cos(d*x + c)^2 + 4*(6*A + 13*C)*cos(d*x + c) + 6*A + 13*C)
*sin(d*x + c)/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) +
 a^4*d)

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {\int \frac {A \sec {\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sec ^{3}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx}{a^{4}} \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**4,x)

[Out]

(Integral(A*sec(c + d*x)/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x) +
Integral(C*sec(c + d*x)**3/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x))
/a**4

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.23 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {\frac {C {\left (\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}} + \frac {3 \, A {\left (\frac {35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

1/840*(C*(105*sin(d*x + c)/(cos(d*x + c) + 1) + 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 21*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5 - 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 + 3*A*(35*sin(d*x + c)/(cos(d*x + c) + 1) - 35
*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 5*sin(d*x + c)^7/(cos(d*x + c)
 + 1)^7)/a^4)/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.82 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=-\frac {15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 15 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 63 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 21 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 105 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 35 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 105 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 105 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{840 \, a^{4} d} \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4,x, algorithm="giac")

[Out]

-1/840*(15*A*tan(1/2*d*x + 1/2*c)^7 + 15*C*tan(1/2*d*x + 1/2*c)^7 - 63*A*tan(1/2*d*x + 1/2*c)^5 + 21*C*tan(1/2
*d*x + 1/2*c)^5 + 105*A*tan(1/2*d*x + 1/2*c)^3 - 35*C*tan(1/2*d*x + 1/2*c)^3 - 105*A*tan(1/2*d*x + 1/2*c) - 10
5*C*tan(1/2*d*x + 1/2*c))/(a^4*d)

Mupad [B] (verification not implemented)

Time = 16.19 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.62 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=-\frac {\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (A+C\right )}{56\,a^4}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A+C\right )}{8\,a^4}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (3\,A-C\right )}{24\,a^4}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (3\,A-C\right )}{40\,a^4}}{d} \]

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^4),x)

[Out]

-((tan(c/2 + (d*x)/2)^7*(A + C))/(56*a^4) - (tan(c/2 + (d*x)/2)*(A + C))/(8*a^4) + (tan(c/2 + (d*x)/2)^3*(3*A
- C))/(24*a^4) - (tan(c/2 + (d*x)/2)^5*(3*A - C))/(40*a^4))/d